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Unlike most other enteric bacterial pathogens, EPEC is

non-invasive and does not produce toxins. Following at-

tachment, EPEC causes characteristic morphological al-

terations of epithelial cells known as attaching and effac-

ing (A/E) lesions. These manifest as effacement of mi-

crovilli on the intestinal epithelial surface at the sites of

bacterial attachment. Actin polymerization below the site

of attachment leads to the elevation of the membrane

into a pedestal-like structure.11

Direct effects on tight junction proteins

EPEC increases transepithelial permeability by directly

altering TJ protein phosphorylation and distribution.10

EPEC also increases permeability by promoting con-

traction of the perijunctional actomyosin ring. The re-

sulting alteration in barrier function can be measured as

a drop in transepithelial electrical resistance (TER). Studies

have focused on the effects of EPEC on the transmem-

brane TJ proteins occludin and claudin-1 and the intra-

cellular TJ-associated protein, zonula occludens 1 (ZO-

1). Occludin and the claudin family of proteins have

four transmembrane domains that form two extracellu-

lar loops in the intercellular space, and participate in the

formation of the TJ barrier, possibly by lateral polymer-

ization.12 ZO-1 is a cytosolic protein that associates with

claudins via N-terminal {Note: abbreviation without ex-

planation} (PDZ) domains, and with occludin via a gua-

Enteropathogenic Escherichia coli (EPEC) is a major

cause of diarrhea in children throughout the developing

world. The diarrhea can be severe, refractory to oral

rehydration, protracted, and often lethal. EPEC infection

is primarily a disease of children under 2 years of age,

although adults exposed to high inocula are also sus-

ceptible.1,2 In the 0–6 month age group, EPEC strains

are the most frequently isolated bacterial diarrheal patho-

gens. In developing countries, 30–40% of infantile di-

arrhea cases can be attributed to this pathogen.3–6 EPEC

strains are also responsible for sporadic cases of diarrhea

in the US and other developed countries. Two studies in

Greece identified EPEC in 3.9–5.5% of patients with

diarrhea, predominantly children.7,8 A study in Seattle

using diagnostic DNA probes revealed the presence of

EPEC-like organisms in 3.6% of the population, a fre-

quency greater than that observed for Campylobacter

spp, E. coli 0157:H7, Salmonella spp, Shigella spp or

Yersinia spp.9 This suggests that the relevance of EPEC

as a pathogen in developed countries may be seriously

underestimated.

The precise mechanism by which EPEC causes di-

arrhea is presently not known. Potential mechanisms

include the disruption of tight junction (TJ) permeabili-

ty, alterations in intestinal ion transport and stimulation

of intestinal inflammation.10 This review will focus pre-

dominantly on the alteration of TJs by EPEC, and the

EPEC factors required for inducing these modifications.
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nylyl kinase domain. ZO-1 also binds to actin, and thus

links the TJ to the cytoskeleton. Numerous studies from

the laboratory of the authors have demonstrated the

modification and movement of these proteins away from

the TJ structure following EPEC infection. Infection in-

creases the detergent solubility of ZO-1 and occludin,

but not claudin-1.13 Furthermore, ZO-1 progressively

dissociated from claudin-1 and occludin post-EPEC in-

fection. Immunofluorescence confocal microscopy revealed

a progressive loss of occludin from TJs and its redistri-

bution along the lateral membrane and into the cyto-

plasm. Claudin-1 appeared only to migrate down the

lateral membrane, without significant re-distribution to

the cytosol. Freeze-fracture electron microscopy also re-

vealed claudin-1 containing aberrant strands through-

out the lateral membrane of infected cells.

The detailed mechanism by which EPEC alters the

distribution of the TJ proteins is presently not known.

Dephosphorylation of occludin is known to decrease its

association with TJs.14 It has been demonstrated that

EPEC infection of T84 cells results in the progressive

dephosphorylation of occluding,15 corresponding with the

removal of this protein from the TJS. Preliminary data

suggest that EPEC-induced occludin dephosphorylation

may involve a serine/threonine phosphatase since it can

be inhibited by calyculin A.

Effects on the perijunctional actomyosin ring

Intracellular calcium levels are likely to be elevated

following EPEC infection, constituting one of the signals

leading to EPEC-induced alteration of barrier function.10

The calcium chelator BAPTA-AM abrogated an infec-

tion-induced drop in TER without affecting pro-inflam-

matory responses.16

EPEC infection activates myosin light chain kinase

(MLCK) in a calcium-dependent manner. The phospho-

rylation of MLC by MLCK results in the contraction of

the perijunctional actomyosin ring thus increasing para-

cellular permeability. MLCK pharmacological inhibitors

and inhibitory peptides could block EPEC-induced MLC

phosphorylation, as well as the concomitant decrease in

TER.17,18

EPEC virulence factors required to alter
intestinal permeability

The EPEC factors responsible for altering the TJ bar-

rier and the signaling pathways involved are just begin-

ning to be elucidated. A 35-kb pathogenicity island known

as the locus of enterocyte effacement (LEE) was shown

to be necessary and sufficient for EPEC infection in in

vitro studies.19,20 It was demonstrated that non-patho-

genic laboratory strains of E. coli harboring a plasmid

containing the LEE were able to mimic EPEC for at-

tachment, A/E lesion and pedestal formation.20 Studies

demonstrate that this strain is able to re-distribute occlu-

din and disrupt barrier function.15

The five operons in the LEE encode the components

of a type III secretion system (TTSS) as well as effector

proteins.19 The TTSS injects effector proteins including

the translocated/intimin receptor (Tir) directly into host

cells.21 Upon entry into host cells, Tir is phosphorylated

and inserted into host membranes. Interaction of intimin

on the bacterial surface with Tir on the host membrane

results in intimate attachment to the epithelial cells. Tir

phosphorylation initiates the recruitment of various pro-

teins to the site of bacterial attachment and nucleates

actin polymerization leading to pedestal formation.22 Also

present in the LEE are the genes for the effector pro-

teins known as E. coli secreted proteins (Esp). Of the

known secreted proteins of EPEC, EspA, EspB and EspD

are required for A/E lesion formation, possibly due to

their involvement in delivery of Tir into host cells. Dele-

tion/disruption of the proteins involved in secretion and

transport of effector proteins into host cells results in an

inability to induce host effects, including TJ alterations.10

In contrast to EspA, EspB, and EspD, the effector

proteins EspF, EspG, EspH and Map do not appear to

be involved in the type III secretion apparatus.23–25 Thus

the espF deletion strain, UMD874, secretes wild type

levels of EspA, EspB and EspD. Also, UMD874 induces

A/E lesions and behaves like wild type EPEC in adher-

ence, ability to induce actin condensation and tyrosine

phosphorylation in host cells. However, in sharp contrast

to wild type EPEC, UMD874 is attenuated in its ability

to perturb epithelial cell TJs.26 These defects can be

complemented by transforming an intact copy of espF

into the mutant bacteria.

EspF is a proline rich protein with three proline-rich

C-terminal repeat sequences. These repeat sequences

have been proposed to interact with host proteins and

thereby lead to functional consequences. In studies us-

ing progressive C-terminal deletions to complement the

espF deletion strain of EPEC it was determined that the

proline-rich repeat sequences were dispensable for induc-

ing barrier function alterations.27 Current studies are aimed

at evaluating the minimum stretch of the N-terminal frag-

ment of EspF required for effecting TJ disruption.
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While EspF is clearly involved in disruption of TJs,

the contribution of other effector molecules has not been

closely examined. In addition, the mechanism by which

EspF alters TJs is not known. Possibilities include inter-

actions with and activation of signaling pathways and

direct disruption of localization of TJ proteins.

Clearly this is an area of investigation that deserves

additional attention.
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Ç åíôåñïðáèïãüíïò Escherichia coli (EPEC), Ýíá áðü ôá ðáèïãüíá ðïõ ðñïêáëïýí äéÜññïéá óôá íåïãíÜ,

ðñïóêïëëÜôáé óôá åðéèçëéáêÜ êýôôáñá ôïõ åíôÝñïõ, ðñïêáëåß ÷áñáêôçñéóôéêÝò âëÜâåò êáé äéáôáñÜóóåé ôç

ëåéôïõñãßá ôïõò. ̧ íáò ìç÷áíéóìüò, äéÜ ôïõ ïðïßïõ ç EPEC ðñïêáëåß äéÜññïéá, åßíáé ç äéáôáñá÷Þ ôçò ëåéôïõñ-

ãßáò ôïõ åðéèçëéáêïý öñáãìïý êáé ç áýîçóç ôçò äéáêõôôáñéêÞò äéáðåñáôüôçôáò, ðïõ åðÝñ÷ïíôáé ùò áðïôÝëå-

óìá ôçò áíáêáôáíïìÞò ôùí ðñùôåúíþí ôçò óôåíÞò åðáöÞò (tight junction), üðùò ç ïêëïõäßíç êáé ç êëáïõäßíç,

êáèþò êáé ôçò óõóôïëÞò ôïõ ðåñß ôçí åðáöÞ äáêôõëßïõ áêôéíïìõïóßíçò. Áí êáé ïé êáôáññÜêôåò ìåôáãùãÞò ôùí

ìçíõìÜôùí, ðïõ ïäçãïýí óôçí áíáêáôáíïìÞ ôùí ðñùôåúíþí ôçò óôåíÞò åðáöÞò, ðáñáìÝíïõí áêüìç áäéåõêñß-

íéóôïé, Ý÷åé äåé÷èåß üôé ç óýóðáóç ôïõ äáêôõëßïõ ôçò áêôéíïìõïóßíçò åßíáé áðïôÝëåóìá åíåñãïðïßçóçò ôçò Ca-

åîáñôþìåíçò êéíÜóçò ôçò ìõïóßíçò. Ç ðáèïãåíåôéêÞ äñÜóç ôùí EPEC ðñïûðïèÝôåé Ýíá åêêñéôéêü óýóôçìá

ôýðïõ ÉÉÉ, ôï ïðïßï åéóÜãåé äñáóôéêÝò ðñùôåÀíåò êáôåõèåßáí ìÝóá óôï êýôôáñï. Ìéá áðü áõôÝò ôéò ðñùôåÀíåò, ç

EspF, öáßíåôáé üôé åßíáé êñßóéìçò óçìáóßáò ãé’ áõôÞ ôç äéáäéêáóßá, åðåéäÞ äéáèÝôåé ôñåéò ðëïýóéåò óå ðñïëßíç

åðáíáëáìâáíüìåíåò áëëçëïõ÷ßåò, ðïõ áëëçëåðéäñïýí ìå ðñùôåÀíåò ôïõ îåíéóôÞ, êáé ðñïêáëåß äïóïåîáñôþìå-

íç äéáôáñá÷Þ ôçò ëåéôïõñãßáò ôïõ öñáãìïý. ÐáñÜ ôáýôá, ï áêñéâÞò ìç÷áíéóìüò äñÜóçò ôçò EspF êáé ç

ìåóïëáâçôéêÞ äñÜóç Üëëùí åêêñéôéêþí ðñùôåúíþí ðáñáìÝíïõí áêüìç áäéåõêñßíéóôïé.
................................................................................................................................................................................
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